

Experimental proposals utilizing the BES diagnostic for the Turbulence and Transport TSG

D. R. Smith, R. J. Fonck, and G. R. McKee University of Wisconsin-Madison

2010 NSTX Research Forum

December 1-3, 2009

4 proposed experiments

- Survey of low-k fluctuations in NSTX
- Investigation of low-k fluctuations as a source of anomalous momentum transport
- Investigation of multi-scale turbulence: T_e/T_i and E×B shear dependences
- Investigation of the k-space isotropy of ETG turbulence (submitted in FY09)

XP1: Survey of low-k fluctuations in NSTX

• Goal: Conduct initial survey of low-k fluctuation properties (e.g. amplitudes, correlation lengths, correlation times) in several NSTX operating regimes

• Method

- Radial, poloidal, and 2D BES arrays
- Edge and core measurement locations
- L-mode and H-mode plasmas
- B_t/I_p, P_{nbi}, and V_{nbi} scans
- Compare BES and GPI measurements
- Runtime: 2 days

XP1: Survey of low-k fluctuations (con't)

XP2: Investigation of low-k fluctuations as a source of anomalous momentum transport

- Goal: Document ñ_i scalings of diffusive and convective anomalous momentum transport for comparison to theory
- Motivation
 - Competing theories implicitly predict different ñ_i scalings for the turbulent momentum pinch
 - "Low-k turbulence-based models predict greater pinch velocities in the core than are typically observed" (Kaye)
- Method
 - Use n=3 nRMP breaking at several discharge times for perturbative momentum transport analysis (successful in outer plasma in XPs 813 and 908 (Solomon))
 - Apply NBI pulses (successful in core plasma in XP 820 (Kaye))
 - Scan Bt/Ip for natural rotation variation
 - Analyze with GK simulations
- Contribution: FY08 Joule milestone
- Runtime: 1 day

XP2: momentum transport (con't)

XP 813 (Solomon) showed Ln dependence can distinguish turbulent momentum pinch theories

XP 820 (Kaye) showed low-k turbulence theories over-predict pinch velocities

XP3: Investigation of multi-scale turbulence: Te/Ti and E×B shear dependences

- Goal: Investigate the multi-scale nature of turbulence (ITG/ TEM/ETG) by inducing different responses in different regions of k-space
- Motivation
 - ITG and TEM/ETG exhibit opposite Te/Ti dependencies
 - Generally {γ_{ITG}, γ_{TEM}} << γ_{ETG} ~ γ_{E×B}, so modes may respond differently to E×B variations
- Method
 - Scan Bt/Ip and P_{NBI} for Te/Ti variation (consider NBI+HHFW)
 - Scan n=3 nRMP breaking to alter E×B shear
 - Analyze with GK simulations
- Contributions: NSTX milestone R(11-1) and ITPA TC-10
- Runtime: 2 days

XP4: Investigation of ETG turbulence isotropy

- Goal: Document the isotropy or anisotropy of ETG turbulence
- Motivation
 - − NL GK simulations do not agree regarding the isotropy of ETG turbulence around $k_{\parallel}\rho_{e} \approx 0.1$
 - Radial streamers (anisotropic structures) and ETG transport exhibit a strong dependence on magnetic shear
- Method

- Use novel high-k scattering configurations to vary k/kr
- Use current ramp-downs to transiently alter magnetic shear
- Analyze with GK simulations
- Runtime: 1 day

XP4: ETG isotropy (con't)

Use novel high-k scattering configurations to vary k_{θ}/k_{r}

probe beam

